706 research outputs found

    Effect of Hydrostatic Pressure on the Superconductivity in NaxCoO2.yH2O

    Full text link
    The effect of hydrostatic pressure on the superconducting transition temperature of Na{0.35}CoO{2}.yH{2}O was investigated by ac susceptibility measurements up to 1.6 GPa. The pressure coefficient of T{c} is negative and the dependence T{c}(p) is nonlinear over the pressure range investigated. The magnitude of the average dlnT{c}/dp=-0.07 GPa^{-1} is comparable to the pressure coefficient of electron-doped high-T{c} copper oxide superconductors with a similar value of T{c}. Our results provide support to the assumption of two-dimensional superconductivity in Na{0.35}CoO{2}.yH{2}O, which is similar to the cuprate systems, and suggest that intercalation of larger molecules may lead to an enhancement of T{c}.Comment: Revised Manuscrip

    Modeling your college library after a commercial bookstore? the Hong Kong Design Institute Library experience

    Get PDF
    The Hong Kong Design Institute (HKDI) is a leading design education institute in Hong Kong under the Vocational Training Council (VTC) group. Opened in September 2010, the HKDI Learning Resources Centre is a specialist library for the study of art and design. The mission of the HKDI Library is to support and promote the academic goals of the Institute, i.e., to prepare the students for professional careers; emphasize learning through a creative and interactive environment; meanwhile uphold a positively relaxing, and yet inviting environment that is very much similar to a commercial bookstore. In order to accomplish this, the HKDI Library aims to serve as a user-centered library for creative learning--by providing an important place for both students and faculty to actively engage in study, research, as well as socializing. Through a series of small focus group interviews with both students and faculty staff at the HKDI, the study investigates how influential the library environment could be in fostering students\u27 learning and other social activities under a creative environment

    Magnetic Phase Diagrams of Multiferroic Hexagonal RMnO3 (R=Er, Yb, Tm, and Ho)

    Full text link
    The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fields than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.Comment: 23 pages, 16 figures, to be published in JMR's Aug. focus issue on multiferroic

    Carrier dynamics and infrared-active phonons in c-axis oriented RuSr2_2GdCu2_2O8_8 film

    Full text link
    The conductivity spectra of c-axis oriented thin RuSr2_2GdCu2_2O8_8 film on SrTiO3_3 substrate, prepared by pulsed-laser deposition, are obtained from the analysis of the reflectivity spectra over broad frequency range and temperatures between 10 and 300 K. The free charge carriers are found to be strongly overdamped with their scattering rate (1.0 eV at room temperature) exceeding the plasma frequency (0.55 eV). Four phonon lines are identified in the experimental spectra and assigned to the specific oxygen related in-plane polarized vibrations based on the comparison with the results of a lattice dynamics shell model calculations.Comment: 3 pages, 4 figure

    Thermodynamic properties in the normal and superconducting states of Na(x)CoO(2)*yH(2)O powder measured by heat capacity experiments

    Full text link
    The heat capacity of superconducting Na(x)CoO(2)*yH(2)O was measured and the data are discussed based on three different models: The thermodynamic Ginzburg-Landau model, the BCS theory, and a model including the effects of line nodes in the superconducting gap function. The electronic heat capacity is separated from the lattice contribution in a thermodynamically consistent way maintaining the entropy balance of superconducting and normal states at the critical temperature. It is shown that for a fully gapped superconductor the data can only be explained by a reduced (about 55 %) superconducting volume fraction. The data are compatible with 100 % superconductivity in the case where line nodes are present in the superconducting gap function.Comment: Revised, 19 pages, 3 figure

    Magnetic phase diagrams of the Kagome staircase compound Co3V2O8

    Full text link
    At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the commensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration.Comment: Proceedings of the 2007 Conference on Strongly Correlated Electron Systems, 2 pages, 2 figure

    Pressure Effect on the Superconducting and Magnetic Transitions of the Superconducting Ferromagnet RuSr2GdCu2O8

    Full text link
    The superconducting ferromagnet RuSr2GdCu2O8 was investigated at high pressure. The intra-grain superconducting transition temperature, Tc, is resolved in ac-susceptibility as well as resistivity measurements. It is shown that the pressure shift of Tc is much smaller than that of other high-Tc compounds in a similar doping state. In contrast, the ferromagnetic transition temperature, Tm, increases with pressure at a relative rate that is about twice as large as that of Tc. The high-pressure data indicate a possible competition of the ferromagnetic and superconducting states in RuSr2GdCu2O8

    High Pressure Study on MgB2

    Full text link
    The hydrostatic pressure effect on the newly discovered superconductor MgB2 has been determined. The transition temperature Tc was found to decrease linearly at a large rate of -1.6 K/GPa, in good quantitative agreement with the ensuing calculated value of -1.4 K/GPa within the BCS framework by Loa and Syassen, using the full-potential linearlized augmented plane-wave method. The relative pressure coefficient, dlnTc/dp, for MgB2 also falls between the known values for conventional sp- and d-superconductors. The observation, therefore, suggests that electron-phonon interaction plays a significant role in the superconductivity of the compound.Comment: 8 pages, 3 figures; submitted to Physical Review B (February 14, 2001; revised March 21, 2001); minor modifications, including a discussion of the preprint by Vogt et a

    A Possible Crypto-Superconducting Structure in a Superconducting Ferromagnet

    Full text link
    We have measured the dc and ac electrical and magnetic properties in various magnetic fields of the recently reported superconducting ferromagnet RuSr2GdCu2O8. Our reversible magnetization measurements demonstrate the absence of a bulk Meissner state in the compound below the superconducting transition temperature. Several scenarios that might account for the absence of a bulk Meissner state, including the possible presence of a sponge-like non-uniform superconducting or a crypto-superconducting structure in the chemically uniform Ru-1212, have been proposed and discussed.Comment: 8 pages, 5 PNG figures, submitted to Proceedings of the 9th Japan-US Workshop on High-Tc Superconductors, Yamanashi, Japan, October 13-15, 1999; accepted for publication in Physica C (December 24, 1999

    Thermal expansion and pressure effect in MnWO4

    Full text link
    MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low- temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007. to be published in Physica
    • 

    corecore